关灯 字号:小

第76章 对火星轨道变化问题的最后解释

章节报错(免登陆)

一秒记住【笔趣阁小说网】biquge345.com,更新快,无弹窗!


    作者君在作品相关中其实已经解释过这个问题。
    不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”
    那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。
    以下是文章内容:
    long-terntegransandstabilityofryorbitsinoursrsystem
    abstract
    wepresenttheresultsofverylong-teruricalintegransofryorbitalnsover109-yrti-spansincludingallninepls.aquickinspecnofournuricaldatashowsthattheryn,atleastinoursiledynacaldel,seetobequitestableevenoverthisverylongti-span.acloserlookatthelowest-frequencyosciningalow-passfiltershowthepotentiallydifivecharacterofterrestrialryn,especiallythatofrcury.thebehauroftheentriercuryinourintegransisqualitativelysrtotheresultsfroacqueskar'ssecrperturbantheory(e.g.ex∼0.35over∼±4gyr).however,therearenoapparentsecrincreasesofentricityorinclinaninanyorbitalelentsofthepls,whichyberevealedbystilllonger-teruricalintegrans.wehavealsoperfordacoupleoftrialintegransincludingnsoftheouterfiveplsovertheduranof±5x1010yr.theresultindicatesthatthethreejorresonancesintheneptune–plutosysteavebeenintainedoverthe1011-yrti-span.
    1introducn
    1.1defininoftheproblem
    thequesnofthestabilityofoursrsysteasbeendebatedoverseveralhundredyears,sincetheeraofnewton.theprobleasattractednyftheticiansovertheyearsandhasyedacentralroleinthedevelopntofnon-lineardynacsandchaostheory.however,wedonotyethaveadefiniteanswertothequesnofwhetheroursrsystesstableornot.thisispartlyaresultofthefactthatthedefininoftheterstability’isvaguewhenitiedinrntotheproblefryninthesrsysteactuallyitisnoteasytogiveaclear,rigorandphysicallyaningfuldefininofthestabilityofoursrsyste
    angnydefininsofstability,hereweadoptthehilldefinin(dn1993):actuallythisisnotadefininofstability,butofinstability.wedefineasystesbeingunstablewhenacloseencounteroewhereinthesystestartingfrocertaininitialconfiguran(chaers,wetherill&ito&&tanikawa1999).asystesdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthrgerhillrad.otherwisethesystesdefinedasbeingstable.henceforwardwestatethatourrysystesdynacallystableifnocloseencounterhappensduringtheageofoursrsysteabout±5gyr.incidentally,thisdefininyberecedbyoneinwhichanurrenceofanyorbitalcrossingbetweeneitherofapairofplstakesce.thisisbeceweknowfroxperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinryandprotorysyste(yoshinaga,kokubo&&kino1999).ofcoursethisstatentplyappliedtosystewithstableorbitalresonancessuchastheneptune–plutosyste
    1.2previstudiesandfthisresearch
    inaddintothevaguenessoftheconceptofstability,theplsinoursrsystehowacharactertypiicalchaos(sn&&wisdo988,1992).theceofthischaoticbehaurisnowpartlyunderstoodasbeingaresultofresonanceovepping(rray&lecar,franklin&&holn2001).however,itwouldrequireintegratingoveranenseleofrysysteincludingallnineplsforapedcoveringseveral10gyrtothoroughlyunderstandthelong-tervolunofryorbits,sincechaoticdynacalsystearecharacterizedbytheirstrongdependenceoninitialcondins.
    frohatpointofview,nyoftheprevilong-teruricalintegransincludedonlytheouterfivepls(sn&kinoshita&&nakai1996).thisisbecetheorbitalpedsoftheouterplsaresochlongerthanthoseoftheinnerfourplsthatitischeasiertofollowthesysteoragivenintegranped.atpresent,thelongestnuricalintegranspublishedinjournalsarethoseofduncan&&lissauer(1998).althoughtheirintargetwastheeffeain-sequenasslossonthestabilityofryorbits,theyperfordnyintegranscoveringupto∼1011yroftheorbitalnsofthefourjovianpls.theinitialorbitalelentsandssesofplsarethesaasthoseofoursrsystenduncan&&lissauer'spaper,buttheydecreasethessofthesungraduallyintheirnuricalexperints.thisisbecetheyconsidertheeffeain-sequenasslossinthepaper.consequently,theyfoundthatthecrossingti-scaleofryorbits,whichcanbeatypicalindicatoroftheinstabilityti-scale,isquitesensitivetotherateofssdecreaseofthesun.whenthessofthesunisclosetoitspresentvalue,thejovianplsreinstableover1010yr,orperhapslonger.duncan&&lissaueralsoperfordfoursrexperintsontheorbitalnofsevenpls(vetoneptune),whichcoveraspanof∼109yr.theirexperintsonthesevenplsarenotyetprehensive,butitseethattheterrestrialplsalsoreinstableduringtheintegranped,intainingalstregroscins.
    ontheotherhand,inhisuratese-analyticalsecrperturbantheoryskar1988)skarfindsthargeandirregrvarianscanappearintheentricitiesandinclinansoftheterrestrialpls,espeercuryandrsonati-scaleofseveral109yrskar1996).theresultsoskar'ssecrperturbantheoryshouldbeedandinvestigatedbyfullynuricalintegrans.
    inthispaperwepresentprelinaryresultsofsixlong-teruricalintegransonallnineryorbits,coveringaspanofseveral109yr,andoftwootherintegranscoveringaspanof±5x1010yr.thetotalpsedtiforallintegransisrethan5yringseveraldedicatedpcsandworkstans.oneofthefundantalconnsofourlong-terntegransisthatsrsystrynseetobestableinterofthehillstabilitynnedabove,atleastoverati-spanof±4gyr.actually,inournuricalintegransthesysteasfarrestablethanwhatisdefinedbythehillstabilitycriten:notonlydidnocloseencounterhappenduringtheintegranped,butalsoalltheryorbitalelentshavebeenconfinedinanarrowrenbothintiandfrequenain,thoughrynsarestochastic.sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-teruricalintegrans,weshowtypicalexalefiguresasevidenceoftheverylong-tertabilityofsrsystryn.forreaderswhohaverespecificanddeeperinterestsinournuricalresults,wehavepreparedawebpage(ess),raworbitalelents,theirlow-passfilteredresults,varianofdunayelentsandangrntueficit,andresultsofoursileti–frequencyanalysisonallofourintegrans.
    insecn2webrieflyexinourdynacaldel,nuricalthodandinitialcondinedinourintegrans.secn3isdevotedtoadescripnofthequickresultsofthenuricalintegrans.verylong-tertabilityofsrsystrynisapparentbothinryposinsandorbitalelents.aroughestinofnuricalerrorsisalsogiven.secn4goesontoadisnofthelongest-terarianofryorbitingalow-passfilterandincludesadisnofangrntueficit.insecn5,wepresentasetofnuricalintegransfortheouterfiveplsthatspans±5x1010yr.insecn6wealsodissthelong-tertabilityoftherynanditspossiblece.
    2descripnofthenuricalintegrans
    (本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)
    2.3nuricalthod
    weutilizeasecond-orderwisdoholnsylectiainintegranthod(wisdokinoshita,yoshida&&nakai1991)withaspecialstart-upproceduretoreducethetruncanerrorofanglevariables,‘wartart’(saha&&treine1992,1994).
    thestepsizeforthenuricalintegransis8dthroughoutallintegransoftheninepls(n±1,2,3),whichisabout111oftheorbitalpedoftheinnerstpl(rcury).asforthedeternanofstepsize,wepartlyfollowtheprevinuricalintegranofallnineplsinsn&&wisdo1988,7.2d)andsaha&&treine(1994,22532d).weroundedthedecilpartofthetheirstepsizesto8tokethestepsizealtipleof2inordertoreducethenofround-offerrorintheputanprocesses.inrntothis,wisdo&holn(1991)perfordnuricalintegransoftheouterfiveryorbitingthesylecticpwithastepsizeof400d,110.83oftheorbitalpedofjupiter.theirresultseetobeurateenough,whichpartlytifiesourthodofdeterningthestepsize.however,sincetheentricityofjupiter(∼0.05)ischsllerthanthatofrcury(∼0.2),weneedsocarewhenweparetheseintegranssilyinterofstepsizes.
    intheintegranoftheouterfivepls(f±),wefixedthestepsizeat400d.
    weadoptgs'fandgfuncnsinthesylecticptogetherwiththethird-orderhalleythod(danby1992)asasolverforkeplerequans.thenuerofxiteranswesetinhalley'sthodis15,buttheyneverreachedthexinanyofourintegrans.
    theintervalofthedataoutputis200000d(∼547yr)forthecalcnsofallninepls(n±1,2,3),andabout8000000d(∼21903yr)fortheintegranoftheouterfivepls(f±).
    althoughnooutputfilteringwasdonewhenthenuricalintegranswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadpletedallthecalcns.seesecn4.1forredetail.
    2.4errorestin
    2.4.1rtiveerrorsintotalenergyandangrntum
    ordingtooneofthebasicpropertiesofsylecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangrntu,ourlong-teruricalintegransseeohavebeenperfordwithverysllerrors.theaveragedrtiveerrorsoftotalenergy(∼10−9)andoftotngrntu∼10−11)havereinednearlyconstantthroughouttheintegranped(fig.1).thespecialstartupprocedure,wartart,wouldhavereducedtheaveragedrtiveerrorintotalenergybyaboutoneorderofgnitudeorre.
    rtivenuricalerrorofthetotngrntuaa0andthetotalenergyδee0inournuricalintegransn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotngrnturespectively,ande0anda0aretheirinitialvalues.thehorizontalunitisgyr.
    notethatdifferentoperatingsyste,differenttheticallibraries,anddifferenthardwarearchitecturesresultindifferentnuricalerrors,throughthevariansinround-offerrorhandlingandnuris.intheupperpaneloffig.1,wecanrecognizethissituaninthesecrnuricalerrorinthetotngrntuwhichshouldberigorlypreserveduptochine-eprecin.
    2.4.2errorinrylongitudes
    sincethesylecticpspreservetotalenergyandtotngrntufn-bodydynacalsysteinherentlywell,thedegreeoftheirpreservanynotbeagoodasureoftheacericalintegrans,especiallyasaasureoftheposinalerrorofpls,i.e.theerrorinrylongitudes.toestitethenuricalerrorintherylongitudes,weperfordthefollowingprocedures.weparedtheresultofourinlong-terntegranswithsotestintegrans,whichspanchshorterpedsbutwithchhigheruracythantheinintegrans.forthispurpose,weperfordachreurateintegranwithastepsizeof0.125d(164oftheinintegrans)spanning3x105yr,startingwiththesainitialcondinsasinthen−1integran.weconsiderthatthistestintegranprovidewitha‘pseudo-true’solunofryorbitalevolun.next,weparethetestintegranwiththeinintegran,n−1.forthepedof3x105yr,weseeadifferenceinananoliesoftheearthbetweenthetwointegransof∼0.52°(inthecaseofthen−1integran).thisdifferencecanbeextraptedtothevalue∼8700°,about25rotansofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtiinthesylecticp.srly,thelongitudeerrorofplutocanbeestitedas∼12°.thisvalueforplutoischbetterthantheresultinkinoshita&&nakai(1996)wherethedifferenceisestitedas∼60°.
    3nuricalresults–i.nceattherawdata
    inthissecnwebrieflyreviewthelong-tertabilityofryorbitalnthroughsosnapshotsofrawnuricaldata.theorbitalnofplsindicateslong-tertabilityinallofournuricalintegrans:noorbitalcrossingsnorcloseencountersbetweenanypairofplstookce.
    3.1generaldescripnofthestabilityofryorbits
    first,webrieflylookatthegeneralcharacterofthelong-tertabilityofryorbits.ourinterestherefoesparticrlyontheinnerfourterrestrialplsforwhichtheorbitalti-scalesarechshorterthanthoseoftheouterfivepls.aswecanseeclearlyfrohenarorbitalconfiguransshowninfigs2and3,orbitalposinsoftheterrestrialplsdifferlittlebetweentheinitindfinalpartofeachnuricalintegran,whichspansseveralgyr.thesolidlinesdenotingthepresentorbitsoftheplsliealstwithintheswarfdotseveninthefinalpartofintegrans(b)and(d).thisindicatesthatthroughouttheentireintegranpedthealstregrvariansofryorbitalnreinnearlythesaastheyareatpresent.
    verticalviewofthefourinnerryorbits(frohez-axisdirecn)attheinitindfinalpartsoftheintegransn±1.theaxesunitsareau.thexy-neissettotheinvariantneofsrsysteotngrntu(a)theinitialpartofn+1(t=0to0.0547x109yr).(b)thefinalpartofn+1(t=4.9339x108to4.9886x109yr).(c)theinitialpartofn−1(t=0to−0.0547x109yr).(d)thefinalpartofn−1(t=−3.9180x109to−3.9727x109yr).ineachpanel,atotalof23684tervalofabout2190yrover5.47x107yr.solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialpls(takenfroe245).
    thevarianofentricitiesandorbitalinclinansfortheinnerfourplsintheinitindfinalpartoftheintegrann+1isshowninfig.4.asexpected,thecharacterofthevarianofryorbitalelentsdoesnotdiffersignificantlybetweentheinitindfinalpartofeachintegran,atleastforve,earthandrs.theelentsofrcury,especiallyitsentricity,seeochangetoasignificantextent.thisispartlybecetheorbitalti-scaleoftheplistheshortestofallthepls,whichleadstoarerapidorbitalevolunthanotherpls;theinnerstplybenearesttoinstability.thisresultappearstobeinsoagreentwitskar's(1994,1996)expectansthargeandirregrvariansappearintheentricitiesandinclinansofre-scaleofseveral109yr.however,theeffectofthepossibleinstabilityoftheorbitofrcuryynotfatallyaffecttheglobalstabilityofthewholerysystewingtothesllssofrcury.wewillnnbrieflythelong-terrbitalevolunofrcurterinsecninglow-passfilteredorbitalelents.
    theorbitalnoftheouterfiveplsseerigorlystableandquiteregroverthisti-span(seealsosecn5).
    3.2ti–frequencyps
    althoughtherynexhibitsverylong-tertabilitydefinedasthenon-existenceofcloseencounterevents,thechaotatureofrydynacscanchangetheoscitorypedandalitudeofryorbitalngraduallyoversue-spans.evensuchslightfluctuansoforbitalvarianinthefrequenain,particrlyinthecaseofearth,canpotentiallyhaveasignificanteffectonitssurfaceclitesystehroughsrinsnvarian(cf.berger1988).
    togiveanoverviewofthelong-terhangeinpedicityinryorbitaln,weperfordnyfastfouriertransforns(ffts)alongthetiaxis,andsuperposedtheresultingpedgratodrawtwo-dinnalti–frequencyps.thespecificapproachtodrawingtheseti–frequencypsinthispaperisverysile–chsilerthanthewaveletanalysisoskar's(1990,1993)frequencyanalysis.
    dividethelow-passfilteredorbitaldataintonyfragntsofthesalenh.thelenhofeachdatasegntshouldbealtipleof2inordertoapplythefft.
    eachfragntofthedatahasrgeoveppingpart:forexale,whentheithdatabeginsfro=tiandendsatt=ti+t,thenextdatasegntrangesfroi+δt≤ti+δt+t,whereδt?t.wecontinuethisdivinuntilwereachacertainnuernbywhichtn+treachesthetotalintegranlenh.
    weapplyanffttoeachofthedatafragnts,andobtainnfrequencydiagra.
    ineachfrequencydiagrabtainedabove,thestrenhofpedicitycanberecedbyagrey-scale(orcolour)chart.
    weperforherecent,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegran.thehorizontxisofthesenewgraphsshouldbetheti,i.e.thestartingtisofeachfragntofdata(ti,wherei=1,…,n).theverticxisrepresentstheped(orfrequency)oftheoscinoforbitalelents.
    wehaveadoptedanfftbeceofitsoverwhelngspeed,sincetheauntofnuricaldatatobedeposedintofrequenponentsisterriblyhuge(severaltensofgbytes).
    atypicalexaleoftheti–frequencypcreatedbytheaboveproceduresisshowninagrey-scalediagrasfig.5,whichshowsthevarianofpedicityintheentricityandinclinanofearthinn+2integran.infig.5,thedarkareashowsthatatthetiindicatedbythevalueontheabscissa,thepedicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.wecanrecognizefrohispthatthepedicityoftheentricityandinclinanofearthonlychangesslightlyovertheentirepedcoveredbythen+2integran.thisnearlyregrtrendisqualitativelythesainotherintegransandforotherpls,althoughtypicalfrequenciesdifferplbyndelentbyelent.
    4.2long-terxchangeoforbitalenergyandangrntum
    wecalcteverylong-pedicvarianandexchangeofryorbitalenergyandangrningfiltereddunayelentsl,g,h.gandhareequivalenttotheryorbitngrntunditsvertiponentperunitss.lisrtedtotheryorbitalenergyeperunitssase=−μ22l2.ifthesystespletelylinear,theorbitalenergyandtheangrntuneachfrequencybinstbeconstant.non-linearityintherysysteanceanexchangeofenergyandangrntunthefrequenain.thealitudeofthelowest-frequencyoscinshouldincreaseifthesystesunstableandbreaksdowngradually.however,suchasytofinstabilityisnotpronentinourlong-terntegrans.
    infig.7,thetotalorbitalenergyandangrntufthefourinnerplsandallnineplsareshownforintegrann+2.theupperthreepanelsshowthelong-pedicvarianoftotalenergy(denotedase-e0),totngrntug-g0),andthevertiponent(h-h0)oftheinnerfourplscalctedfrohelow-passfiltereddunayelents.e0,g0,h0denotetheinitialvaluesofeachquantity.theabsolutedifferentheinitialvaluesisplottedinthepanels.thelowerthreepanelsineachfigureshowe-e0,g-g0andh-h0ofthetotalofninepls.thefluctuanshowninthelowerpanelsisvirtuallyentirelyaresultofthessivejovianpls.
    paringthevariansofenergyandangrntuftheinnerfourplsandallninepls,itisapparentthatthealitudesofthoseoftheinnerplsarechsllerthanthoseofallninepls:thealitudesoftheouterfiveplsarecrgerthanthoseoftheinnerpls.thisdoesnotanthattheinnerterrestrialrysubsystesrestablethantheouterone:thisissilyaresultofthertivesllnessofthessesofthefourterrestrialplsparedwiththoseoftheouterjovianpls.anotherthingwenoticeisthattheinnerrysubsysteaybeeunstablererapidlythantheouteronebeceofitsshorterorbitalti-scales.thiscanbeseeninthepanelsdenotedasinner4infig.7wherethelonger-pedicandirregroscinsarereapparentthaninthepanelsdenotedastotal9.actually,thefluctuansintheinner4panelsaretorgeextentasaresultoftheorbitalvarianofthercury.however,wecannotneglectthecontribunfrotherterrestrialpls,aswewillseeinsubsequentsecns.
    4.4long-terouplingofseveralneighbouringplpairs
    leseesoindividualvariansofryorbitalenergyandangrntuxpressedbythelow-passfiltereddunayelents.figs10and11showlong-tervolunoftheorbitalenergyofeachndtheangrntunn+1andn−2integrans.wenoticethatsoplsforpparentpairsinteroforbitalenergyandangrntuxchange.inparticr,veandearthkeatypicalpair.inthefigures,theyshownegativecorrnsinexchangeofenergyandpositivecorrnsinexchangeofangrntuthenegativecorrninexchangeoforbitalenergyansthatthetwoplsforcloseddynacalsystenteroftheorbitalenergy.thepositivecorrninexchangeofangrntueansthatthetwoplsaresiltanelyundercertainlong-tererturbans.candidatesforperturbersarejupiterandsaturn.alsoinfig.11,wecanseethatrsshows'itivecorrnintheangrntuariantotheve–earthsystercuryexhibitscertainnegativecorrnsintheangrntuertheve–earthsystewhichseetobeareacncedbytheconservanofangrntuntheterrestrialrysubsyste
    itisnotclearatthentwhytheve–earthpairexhibitsanegativecorrninenergyexchangeand'itivecorrninangrntuxchange.weypossiblyexinthisthroughobservingthegeneralfactthattherearenosecrterinrysejoraxesuptosecond-orderperturbantheories(cf.brouwer&baletti&&puco1998).thisansthattheryorbitalenergy(whichisdirectlyrtedtothesejoraxisa)ghtbechlessaffectedbyperturbingplsthanistheangrntuxchange(whichrtestoe).hence,theentricitiesofveandearthcanbedisturbedeasilybyjupiterandsaturn,whichresultsin'itivecorrnintheangrntuxchange.ontheotherhand,thesejoraxesofveandeartharelesslikelytobedisturbedbythejovianpls.ttheenergyexchangeybelitedonlywithintheve–earthpair,whichresultsinanegativecorrnintheexchangeoforbitalenergyinthepair.
    asfortheouterjovianrysubsystejupiter–saturnandura–neptuneseeokedynacalpairs.however,thestrenhoftheircouplingisnotasstrongparedwiththatoftheve–earthpair.
    5±5x1010-yrintegransofouterryorbits
    sincethejovianryssesarecrgerthantheterrestrialrysses,wetreatthejovianrysystesanindependentrysystenterofthestudyofitsdynacalstability.hence,weaddedacoupleoftrialintegransthatspan±5x1010yr,includingonlytheouterfivepls(thefourjovianplsppluto).theresultsexhibittherigorstabilityoftheouterrysysteverthislongti-span.orbitalconfigurans(fig.12),andvarianofentricitiesandinclinans(fig.13)showthisverylong-tertabilityoftheouterfiveplsinboththetiandthefrequenains.althoughwedonotshowpshere,thetypicalfrequencyoftheorbitaloscinofplutoandtheotherouterplsisalstconstantduringtheseverylong-terntegranpeds,whichisdenstratedintheti–frequencypsonourwebpage.
    inthesetwointegrans,thertivenuricalerrorinthetotalenergywas∼10−6andthatofthetotngrntuas∼10−10.
    5.1resonancesintheneptune–plutosystem
    kinoshita&&nakai(1996)integratedtheouterfiveryorbitsover±5.5x109yr.theyfoundthatfourjorresonancesbetweenneptuneandplutoareintainedduringthewholeintegranped,andthattheresonancesybetheincesofthestabilityoftheorbitofpluto.thejorfourresonancesfoundinpreviresearchareasfollows.inthefollowingdescripn,λdenotestheanlongitude,Ωisthelongitudeoftheascendingnodeandϖisthelongitudeofperihen.subscriptspandndenoteplutoandneptune.
    annresonancebetweenneptuneandpluto(3:2).thecriticrguntθ1=3λp−2λn−ϖplibratesaround180°withanalitudeofabout80°andalibranpedofabout2x104yr.
    thearguntofperihenofplutowp=θ2=ϖp−Ωplibratesaround90°withapedofabout3.8x106yr.thedonantpedicvariansoftheentricityandinclinanofplutoaresynchronizedwiththelibranofitsarguntofperihen.thisisanticipatedinthesecrperturbantheoryconstructedbykozai(1962).
    thelongitudeofthenodeofplutoreferredtothelongitudeofthenodeofneptune,θ3=Ωp−Ωn,circtesandthepedofthiscircnisequaltothepedofθ2libran.whenθ3beeszero,i.e.thelongitudesofascendingnodesofneptuneandplutoovep,theinclinanofplutobeaxitheentricitybeinindthearguntofperihenbees90°.whenθ3bees180°,theinclinanofplutobeinitheentricitybeaxindthearguntofperihenbees90°again.willia&&benson(1971)anticipatedthistypeofresonanceteredbni,nobili&&carpino(1989).
    anarguntθ4=ϖp−ϖn+3(Ωp−Ωn)libratesaround180°withalongped,∼5.7x108yr.
    inournuricalintegrans,theresonances(i)–(iii)arewellintained,andvarianofthecriticrguntsθ1,θ2,θ3reinsrduringthewholeintegranped(figs14–16).however,thefourthresonance(iv)appearstobedifferent:thecriticrguntθ4alternateslibranandcircnovera1010-yrti-scale(fig.17).thisisaninterestingfactthatkinoshita&&nakai's(1995,1996)shorterintegranswerenotabletodisclose.
    6disn
    whatkindofdynacalchanisaintainsthislong-tertabilityoftherysystewecaniediatelythinkoftwojorfeaturesthatyberesponsibleforthelong-tertability.first,thereseeobenosignificantlower-orderresonances(annandsecr)betweenanypairangtheninepls.jupiterandsaturnareeannresonance(thef‘greatinequality’),butnottintheresonancezone.higher-orderresonancesycethechaotatureoftherydynacaln,buttheyarenotsostrongastodestroythestablerynwithinthelifeftherealsrsystethesecondfeature,whichwethinkisrrtantforthelong-tertabilityofourrysysteisthedifferenceindynacaldistancebetweenterrestrindjovianrysubsyste(ito&&tanikawa1999,2001).whenweasureryseparansbythetualhillradii(r_),separansangterrestrialplsaregreaterthan26rh,whereasthoseangjovianplsarelessthan14rh.thisdifferenceisdirectlyrtedtothedifferencebetweendynacalfeaturesofterrestrindjovianpls.terrestrialplshavesllersses,shorterorbitalpedsandwiderdynacalseparan.theyarestronglyperturbedbyjovianplsthathavrgersses,longerorbitalpedsandnarrowerdynacalseparan.jovianplsarenotperturbedbyanyotherssivebodies.
    thepresentterrestrialrysystesstillbeingdisturbedbythessivejovianpls.however,thewideseparanandtualinteraongtheterrestrialplsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianplsiso(ej)(orderofgnitudeoftheentricityofjupiter),sincethedisturbancecedbyjovianplsisaforcedoscinhavinganalitudeofo(ej).heighteningofentripleo(ej)∼0.05,isfarfroufficienttoprovokeinstabilityintheterrestrialplshavingsuchawideseparanas26rh.tweassuthatthepresentwidedynacalseparanangterrestrialpls(&;26rh)isprobablyoneofthestsignificantcondinsforintainingthestabilityoftherysystevera109-yrti-span.ourdetailedanalysisofthernshipbetweendynacaldistancebetweenplsandtheinstabilityti-scaleofsrsystrynisnowon-going.
    althoughournuricalintegransspanthelifefthesrsystethenuerofintegransisfarfroufficienttofilltheinitialphasespace.itisnecessarytoperfororeandrenuricalintegranstoandexaneindetailthelong-tertabilityofourrydynacs.
    ——以上文段引自ito,t.&tanikawa,k.long-terntegransandstabilityofryorbitsinoursrsysten.not.r.astron.soc.336,483–500(2002)
    这只是作者君参考的一篇文章,关于太阳系的稳定性。
    还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。
章节报错(免登陆)
验证码: 提交关闭
猜你喜欢: 不明不清 逆天炼气期方羽唐小柔 逆天炼气期 被关女子监狱三年,我修炼成仙了 吞天混沌经:开局先吞圣女修为 不死帝尊 寒门枭主 被逐出宗门后,美人师尊跪求我原谅 武道封神,观摩即可加点! 武神至尊叶风叶紫灵 从娘胎开始入道 皇叔好细腰,娇娇王妃要轻哄 罗天九道天书 开局得到九本天书罗天 国运扮演:汉使怎么扮演?死这! 恐怖时代,从成为守墓人开始 华娱:重生了,还逼我做渣男啊 洪荒:三清也得乖乖叫我一声二叔 神话从宝莲灯开始