一秒记住【笔趣阁小说网】biquge345.com,更新快,无弹窗!
作者君在作品相关中其实已经解释过这个问题。
不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”
那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。
以下是文章内容:
long-terntegransandstabilityofryorbitsinoursrsystem
abstract
wepresenttheresultsofverylong-teruricalintegransofryorbitalnsover109-yrti-spansincludingallninepls.aquickinspecnofournuricaldatashowsthattheryn,atleastinoursiledynacaldel,seetobequitestableevenoverthisverylongti-span.acloserlookatthelowest-frequencyosciningalow-passfiltershowthepotentiallydifivecharacterofterrestrialryn,especiallythatofrcury.thebehauroftheentriercuryinourintegransisqualitativelysrtotheresultsfroacqueskar'ssecrperturbantheory(e.g.ex∼0.35over∼±4gyr).however,therearenoapparentsecrincreasesofentricityorinclinaninanyorbitalelentsofthepls,whichyberevealedbystilllonger-teruricalintegrans.wehavealsoperfordacoupleoftrialintegransincludingnsoftheouterfiveplsovertheduranof±5x1010yr.theresultindicatesthatthethreejorresonancesintheneptune–plutosysteavebeenintainedoverthe1011-yrti-span.
1introducn
1.1defininoftheproblem
thequesnofthestabilityofoursrsysteasbeendebatedoverseveralhundredyears,sincetheeraofnewton.theprobleasattractednyftheticiansovertheyearsandhasyedacentralroleinthedevelopntofnon-lineardynacsandchaostheory.however,wedonotyethaveadefiniteanswertothequesnofwhetheroursrsystesstableornot.thisispartlyaresultofthefactthatthedefininoftheterstability’isvaguewhenitiedinrntotheproblefryninthesrsysteactuallyitisnoteasytogiveaclear,rigorandphysicallyaningfuldefininofthestabilityofoursrsyste
angnydefininsofstability,hereweadoptthehilldefinin(dn1993):actuallythisisnotadefininofstability,butofinstability.wedefineasystesbeingunstablewhenacloseencounteroewhereinthesystestartingfrocertaininitialconfiguran(chaers,wetherill&ito&&tanikawa1999).asystesdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthrgerhillrad.otherwisethesystesdefinedasbeingstable.henceforwardwestatethatourrysystesdynacallystableifnocloseencounterhappensduringtheageofoursrsysteabout±5gyr.incidentally,thisdefininyberecedbyoneinwhichanurrenceofanyorbitalcrossingbetweeneitherofapairofplstakesce.thisisbeceweknowfroxperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinryandprotorysyste(yoshinaga,kokubo&&kino1999).ofcoursethisstatentplyappliedtosystewithstableorbitalresonancessuchastheneptune–plutosyste
1.2previstudiesandfthisresearch
inaddintothevaguenessoftheconceptofstability,theplsinoursrsystehowacharactertypiicalchaos(sn&&wisdo988,1992).theceofthischaoticbehaurisnowpartlyunderstoodasbeingaresultofresonanceovepping(rray&lecar,franklin&&holn2001).however,itwouldrequireintegratingoveranenseleofrysysteincludingallnineplsforapedcoveringseveral10gyrtothoroughlyunderstandthelong-tervolunofryorbits,sincechaoticdynacalsystearecharacterizedbytheirstrongdependenceoninitialcondins.
frohatpointofview,nyoftheprevilong-teruricalintegransincludedonlytheouterfivepls(sn&kinoshita&&nakai1996).thisisbecetheorbitalpedsoftheouterplsaresochlongerthanthoseoftheinnerfourplsthatitischeasiertofollowthesysteoragivenintegranped.atpresent,thelongestnuricalintegranspublishedinjournalsarethoseofduncan&&lissauer(1998).althoughtheirintargetwastheeffeain-sequenasslossonthestabilityofryorbits,theyperfordnyintegranscoveringupto∼1011yroftheorbitalnsofthefourjovianpls.theinitialorbitalelentsandssesofplsarethesaasthoseofoursrsystenduncan&&lissauer'spaper,buttheydecreasethessofthesungraduallyintheirnuricalexperints.thisisbecetheyconsidertheeffeain-sequenasslossinthepaper.consequently,theyfoundthatthecrossingti-scaleofryorbits,whichcanbeatypicalindicatoroftheinstabilityti-scale,isquitesensitivetotherateofssdecreaseofthesun.whenthessofthesunisclosetoitspresentvalue,thejovianplsreinstableover1010yr,orperhapslonger.duncan&&lissaueralsoperfordfoursrexperintsontheorbitalnofsevenpls(vetoneptune),whichcoveraspanof∼109yr.theirexperintsonthesevenplsarenotyetprehensive,butitseethattheterrestrialplsalsoreinstableduringtheintegranped,intainingalstregroscins.
ontheotherhand,inhisuratese-analyticalsecrperturbantheoryskar1988)skarfindsthargeandirregrvarianscanappearintheentricitiesandinclinansoftheterrestrialpls,espeercuryandrsonati-scaleofseveral109yrskar1996).theresultsoskar'ssecrperturbantheoryshouldbeedandinvestigatedbyfullynuricalintegrans.
inthispaperwepresentprelinaryresultsofsixlong-teruricalintegransonallnineryorbits,coveringaspanofseveral109yr,andoftwootherintegranscoveringaspanof±5x1010yr.thetotalpsedtiforallintegransisrethan5yringseveraldedicatedpcsandworkstans.oneofthefundantalconnsofourlong-terntegransisthatsrsystrynseetobestableinterofthehillstabilitynnedabove,atleastoverati-spanof±4gyr.actually,inournuricalintegransthesysteasfarrestablethanwhatisdefinedbythehillstabilitycriten:notonlydidnocloseencounterhappenduringtheintegranped,butalsoalltheryorbitalelentshavebeenconfinedinanarrowrenbothintiandfrequenain,thoughrynsarestochastic.sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-teruricalintegrans,weshowtypicalexalefiguresasevidenceoftheverylong-tertabilityofsrsystryn.forreaderswhohaverespecificanddeeperinterestsinournuricalresults,wehavepreparedawebpage(ess),raworbitalelents,theirlow-passfilteredresults,varianofdunayelentsandangrntueficit,andresultsofoursileti–frequencyanalysisonallofourintegrans.
insecn2webrieflyexinourdynacaldel,nuricalthodandinitialcondinedinourintegrans.secn3isdevotedtoadescripnofthequickresultsofthenuricalintegrans.verylong-tertabilityofsrsystrynisapparentbothinryposinsandorbitalelents.aroughestinofnuricalerrorsisalsogiven.secn4goesontoadisnofthelongest-terarianofryorbitingalow-passfilterandincludesadisnofangrntueficit.insecn5,wepresentasetofnuricalintegransfortheouterfiveplsthatspans±5x1010yr.insecn6wealsodissthelong-tertabilityoftherynanditspossiblece.
2descripnofthenuricalintegrans
(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)
2.3nuricalthod
weutilizeasecond-orderwisdoholnsylectiainintegranthod(wisdokinoshita,yoshida&&nakai1991)withaspecialstart-upproceduretoreducethetruncanerrorofanglevariables,‘wartart’(saha&&treine1992,1994).
thestepsizeforthenuricalintegransis8dthroughoutallintegransoftheninepls(n±1,2,3),whichisabout111oftheorbitalpedoftheinnerstpl(rcury).asforthedeternanofstepsize,wepartlyfollowtheprevinuricalintegranofallnineplsinsn&&wisdo1988,7.2d)andsaha&&treine(1994,22532d).weroundedthedecilpartofthetheirstepsizesto8tokethestepsizealtipleof2inordertoreducethenofround-offerrorintheputanprocesses.inrntothis,wisdo&holn(1991)perfordnuricalintegransoftheouterfiveryorbitingthesylecticpwithastepsizeof400d,110.83oftheorbitalpedofjupiter.theirresultseetobeurateenough,whichpartlytifiesourthodofdeterningthestepsize.however,sincetheentricityofjupiter(∼0.05)ischsllerthanthatofrcury(∼0.2),weneedsocarewhenweparetheseintegranssilyinterofstepsizes.
intheintegranoftheouterfivepls(f±),wefixedthestepsizeat400d.
weadoptgs'fandgfuncnsinthesylecticptogetherwiththethird-orderhalleythod(danby1992)asasolverforkeplerequans.thenuerofxiteranswesetinhalley'sthodis15,buttheyneverreachedthexinanyofourintegrans.
theintervalofthedataoutputis200000d(∼547yr)forthecalcnsofallninepls(n±1,2,3),andabout8000000d(∼21903yr)fortheintegranoftheouterfivepls(f±).
althoughnooutputfilteringwasdonewhenthenuricalintegranswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadpletedallthecalcns.seesecn4.1forredetail.
2.4errorestin
2.4.1rtiveerrorsintotalenergyandangrntum
ordingtooneofthebasicpropertiesofsylecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangrntu,ourlong-teruricalintegransseeohavebeenperfordwithverysllerrors.theaveragedrtiveerrorsoftotalenergy(∼10−9)andoftotngrntu∼10−11)havereinednearlyconstantthroughouttheintegranped(fig.1).thespecialstartupprocedure,wartart,wouldhavereducedtheaveragedrtiveerrorintotalenergybyaboutoneorderofgnitudeorre.
rtivenuricalerrorofthetotngrntuaa0andthetotalenergyδee0inournuricalintegransn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotngrnturespectively,ande0anda0aretheirinitialvalues.thehorizontalunitisgyr.
notethatdifferentoperatingsyste,differenttheticallibraries,anddifferenthardwarearchitecturesresultindifferentnuricalerrors,throughthevariansinround-offerrorhandlingandnuris.intheupperpaneloffig.1,wecanrecognizethissituaninthesecrnuricalerrorinthetotngrntuwhichshouldberigorlypreserveduptochine-eprecin.
2.4.2errorinrylongitudes
sincethesylecticpspreservetotalenergyandtotngrntufn-bodydynacalsysteinherentlywell,thedegreeoftheirpreservanynotbeagoodasureoftheacericalintegrans,especiallyasaasureoftheposinalerrorofpls,i.e.theerrorinrylongitudes.toestitethenuricalerrorintherylongitudes,weperfordthefollowingprocedures.weparedtheresultofourinlong-terntegranswithsotestintegrans,whichspanchshorterpedsbutwithchhigheruracythantheinintegrans.forthispurpose,weperfordachreurateintegranwithastepsizeof0.125d(164oftheinintegrans)spanning3x105yr,startingwiththesainitialcondinsasinthen−1integran.weconsiderthatthistestintegranprovidewitha‘pseudo-true’solunofryorbitalevolun.next,weparethetestintegranwiththeinintegran,n−1.forthepedof3x105yr,weseeadifferenceinananoliesoftheearthbetweenthetwointegransof∼0.52°(inthecaseofthen−1integran).thisdifferencecanbeextraptedtothevalue∼8700°,about25rotansofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtiinthesylecticp.srly,thelongitudeerrorofplutocanbeestitedas∼12°.thisvalueforplutoischbetterthantheresultinkinoshita&&nakai(1996)wherethedifferenceisestitedas∼60°.
3nuricalresults–i.nceattherawdata
inthissecnwebrieflyreviewthelong-tertabilityofryorbitalnthroughsosnapshotsofrawnuricaldata.theorbitalnofplsindicateslong-tertabilityinallofournuricalintegrans:noorbitalcrossingsnorcloseencountersbetweenanypairofplstookce.
3.1generaldescripnofthestabilityofryorbits
first,webrieflylookatthegeneralcharacterofthelong-tertabilityofryorbits.ourinterestherefoesparticrlyontheinnerfourterrestrialplsforwhichtheorbitalti-scalesarechshorterthanthoseoftheouterfivepls.aswecanseeclearlyfrohenarorbitalconfiguransshowninfigs2and3,orbitalposinsoftheterrestrialplsdifferlittlebetweentheinitindfinalpartofeachnuricalintegran,whichspansseveralgyr.thesolidlinesdenotingthepresentorbitsoftheplsliealstwithintheswarfdotseveninthefinalpartofintegrans(b)and(d).thisindicatesthatthroughouttheentireintegranpedthealstregrvariansofryorbitalnreinnearlythesaastheyareatpresent.
verticalviewofthefourinnerryorbits(frohez-axisdirecn)attheinitindfinalpartsoftheintegransn±1.theaxesunitsareau.thexy-neissettotheinvariantneofsrsysteotngrntu(a)theinitialpartofn+1(t=0to0.0547x109yr).(b)thefinalpartofn+1(t=4.9339x108to4.9886x109yr).(c)theinitialpartofn−1(t=0to−0.0547x109yr).(d)thefinalpartofn−1(t=−3.9180x109to−3.9727x109yr).ineachpanel,atotalof23684tervalofabout2190yrover5.47x107yr.solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialpls(takenfroe245).
thevarianofentricitiesandorbitalinclinansfortheinnerfourplsintheinitindfinalpartoftheintegrann+1isshowninfig.4.asexpected,thecharacterofthevarianofryorbitalelentsdoesnotdiffersignificantlybetweentheinitindfinalpartofeachintegran,atleastforve,earthandrs.theelentsofrcury,especiallyitsentricity,seeochangetoasignificantextent.thisispartlybecetheorbitalti-scaleoftheplistheshortestofallthepls,whichleadstoarerapidorbitalevolunthanotherpls;theinnerstplybenearesttoinstability.thisresultappearstobeinsoagreentwitskar's(1994,1996)expectansthargeandirregrvariansappearintheentricitiesandinclinansofre-scaleofseveral109yr.however,theeffectofthepossibleinstabilityoftheorbitofrcuryynotfatallyaffecttheglobalstabilityofthewholerysystewingtothesllssofrcury.wewillnnbrieflythelong-terrbitalevolunofrcurterinsecninglow-passfilteredorbitalelents.
theorbitalnoftheouterfiveplsseerigorlystableandquiteregroverthisti-span(seealsosecn5).
3.2ti–frequencyps
althoughtherynexhibitsverylong-tertabilitydefinedasthenon-existenceofcloseencounterevents,thechaotatureofrydynacscanchangetheoscitorypedandalitudeofryorbitalngraduallyoversue-spans.evensuchslightfluctuansoforbitalvarianinthefrequenain,particrlyinthecaseofearth,canpotentiallyhaveasignificanteffectonitssurfaceclitesystehroughsrinsnvarian(cf.berger1988).
togiveanoverviewofthelong-terhangeinpedicityinryorbitaln,weperfordnyfastfouriertransforns(ffts)alongthetiaxis,andsuperposedtheresultingpedgratodrawtwo-dinnalti–frequencyps.thespecificapproachtodrawingtheseti–frequencypsinthispaperisverysile–chsilerthanthewaveletanalysisoskar's(1990,1993)frequencyanalysis.
dividethelow-passfilteredorbitaldataintonyfragntsofthesalenh.thelenhofeachdatasegntshouldbealtipleof2inordertoapplythefft.
eachfragntofthedatahasrgeoveppingpart:forexale,whentheithdatabeginsfro=tiandendsatt=ti+t,thenextdatasegntrangesfroi+δt≤ti+δt+t,whereδt?t.wecontinuethisdivinuntilwereachacertainnuernbywhichtn+treachesthetotalintegranlenh.
weapplyanffttoeachofthedatafragnts,andobtainnfrequencydiagra.
ineachfrequencydiagrabtainedabove,thestrenhofpedicitycanberecedbyagrey-scale(orcolour)chart.
weperforherecent,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegran.thehorizontxisofthesenewgraphsshouldbetheti,i.e.thestartingtisofeachfragntofdata(ti,wherei=1,…,n).theverticxisrepresentstheped(orfrequency)oftheoscinoforbitalelents.
wehaveadoptedanfftbeceofitsoverwhelngspeed,sincetheauntofnuricaldatatobedeposedintofrequenponentsisterriblyhuge(severaltensofgbytes).
atypicalexaleoftheti–frequencypcreatedbytheaboveproceduresisshowninagrey-scalediagrasfig.5,whichshowsthevarianofpedicityintheentricityandinclinanofearthinn+2integran.infig.5,thedarkareashowsthatatthetiindicatedbythevalueontheabscissa,thepedicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.wecanrecognizefrohispthatthepedicityoftheentricityandinclinanofearthonlychangesslightlyovertheentirepedcoveredbythen+2integran.thisnearlyregrtrendisqualitativelythesainotherintegransandforotherpls,althoughtypicalfrequenciesdifferplbyndelentbyelent.
4.2long-terxchangeoforbitalenergyandangrntum
wecalcteverylong-pedicvarianandexchangeofryorbitalenergyandangrningfiltereddunayelentsl,g,h.gandhareequivalenttotheryorbitngrntunditsvertiponentperunitss.lisrtedtotheryorbitalenergyeperunitssase=−μ22l2.ifthesystespletelylinear,theorbitalenergyandtheangrntuneachfrequencybinstbeconstant.non-linearityintherysysteanceanexchangeofenergyandangrntunthefrequenain.thealitudeofthelowest-frequencyoscinshouldincreaseifthesystesunstableandbreaksdowngradually.however,suchasytofinstabilityisnotpronentinourlong-terntegrans.
infig.7,thetotalorbitalenergyandangrntufthefourinnerplsandallnineplsareshownforintegrann+2.theupperthreepanelsshowthelong-pedicvarianoftotalenergy(denotedase-e0),totngrntug-g0),andthevertiponent(h-h0)oftheinnerfourplscalctedfrohelow-passfiltereddunayelents.e0,g0,h0denotetheinitialvaluesofeachquantity.theabsolutedifferentheinitialvaluesisplottedinthepanels.thelowerthreepanelsineachfigureshowe-e0,g-g0andh-h0ofthetotalofninepls.thefluctuanshowninthelowerpanelsisvirtuallyentirelyaresultofthessivejovianpls.
paringthevariansofenergyandangrntuftheinnerfourplsandallninepls,itisapparentthatthealitudesofthoseoftheinnerplsarechsllerthanthoseofallninepls:thealitudesoftheouterfiveplsarecrgerthanthoseoftheinnerpls.thisdoesnotanthattheinnerterrestrialrysubsystesrestablethantheouterone:thisissilyaresultofthertivesllnessofthessesofthefourterrestrialplsparedwiththoseoftheouterjovianpls.anotherthingwenoticeisthattheinnerrysubsysteaybeeunstablererapidlythantheouteronebeceofitsshorterorbitalti-scales.thiscanbeseeninthepanelsdenotedasinner4infig.7wherethelonger-pedicandirregroscinsarereapparentthaninthepanelsdenotedastotal9.actually,thefluctuansintheinner4panelsaretorgeextentasaresultoftheorbitalvarianofthercury.however,wecannotneglectthecontribunfrotherterrestrialpls,aswewillseeinsubsequentsecns.
4.4long-terouplingofseveralneighbouringplpairs
leseesoindividualvariansofryorbitalenergyandangrntuxpressedbythelow-passfiltereddunayelents.figs10and11showlong-tervolunoftheorbitalenergyofeachndtheangrntunn+1andn−2integrans.wenoticethatsoplsforpparentpairsinteroforbitalenergyandangrntuxchange.inparticr,veandearthkeatypicalpair.inthefigures,theyshownegativecorrnsinexchangeofenergyandpositivecorrnsinexchangeofangrntuthenegativecorrninexchangeoforbitalenergyansthatthetwoplsforcloseddynacalsystenteroftheorbitalenergy.thepositivecorrninexchangeofangrntueansthatthetwoplsaresiltanelyundercertainlong-tererturbans.candidatesforperturbersarejupiterandsaturn.alsoinfig.11,wecanseethatrsshows'itivecorrnintheangrntuariantotheve–earthsystercuryexhibitscertainnegativecorrnsintheangrntuertheve–earthsystewhichseetobeareacncedbytheconservanofangrntuntheterrestrialrysubsyste
itisnotclearatthentwhytheve–earthpairexhibitsanegativecorrninenergyexchangeand'itivecorrninangrntuxchange.weypossiblyexinthisthroughobservingthegeneralfactthattherearenosecrterinrysejoraxesuptosecond-orderperturbantheories(cf.brouwer&baletti&&puco1998).thisansthattheryorbitalenergy(whichisdirectlyrtedtothesejoraxisa)ghtbechlessaffectedbyperturbingplsthanistheangrntuxchange(whichrtestoe).hence,theentricitiesofveandearthcanbedisturbedeasilybyjupiterandsaturn,whichresultsin'itivecorrnintheangrntuxchange.ontheotherhand,thesejoraxesofveandeartharelesslikelytobedisturbedbythejovianpls.ttheenergyexchangeybelitedonlywithintheve–earthpair,whichresultsinanegativecorrnintheexchangeoforbitalenergyinthepair.
asfortheouterjovianrysubsystejupiter–saturnandura–neptuneseeokedynacalpairs.however,thestrenhoftheircouplingisnotasstrongparedwiththatoftheve–earthpair.
5±5x1010-yrintegransofouterryorbits
sincethejovianryssesarecrgerthantheterrestrialrysses,wetreatthejovianrysystesanindependentrysystenterofthestudyofitsdynacalstability.hence,weaddedacoupleoftrialintegransthatspan±5x1010yr,includingonlytheouterfivepls(thefourjovianplsppluto).theresultsexhibittherigorstabilityoftheouterrysysteverthislongti-span.orbitalconfigurans(fig.12),andvarianofentricitiesandinclinans(fig.13)showthisverylong-tertabilityoftheouterfiveplsinboththetiandthefrequenains.althoughwedonotshowpshere,thetypicalfrequencyoftheorbitaloscinofplutoandtheotherouterplsisalstconstantduringtheseverylong-terntegranpeds,whichisdenstratedintheti–frequencypsonourwebpage.
inthesetwointegrans,thertivenuricalerrorinthetotalenergywas∼10−6andthatofthetotngrntuas∼10−10.
5.1resonancesintheneptune–plutosystem
kinoshita&&nakai(1996)integratedtheouterfiveryorbitsover±5.5x109yr.theyfoundthatfourjorresonancesbetweenneptuneandplutoareintainedduringthewholeintegranped,andthattheresonancesybetheincesofthestabilityoftheorbitofpluto.thejorfourresonancesfoundinpreviresearchareasfollows.inthefollowingdescripn,λdenotestheanlongitude,Ωisthelongitudeoftheascendingnodeandϖisthelongitudeofperihen.subscriptspandndenoteplutoandneptune.
annresonancebetweenneptuneandpluto(3:2).thecriticrguntθ1=3λp−2λn−ϖplibratesaround180°withanalitudeofabout80°andalibranpedofabout2x104yr.
thearguntofperihenofplutowp=θ2=ϖp−Ωplibratesaround90°withapedofabout3.8x106yr.thedonantpedicvariansoftheentricityandinclinanofplutoaresynchronizedwiththelibranofitsarguntofperihen.thisisanticipatedinthesecrperturbantheoryconstructedbykozai(1962).
thelongitudeofthenodeofplutoreferredtothelongitudeofthenodeofneptune,θ3=Ωp−Ωn,circtesandthepedofthiscircnisequaltothepedofθ2libran.whenθ3beeszero,i.e.thelongitudesofascendingnodesofneptuneandplutoovep,theinclinanofplutobeaxitheentricitybeinindthearguntofperihenbees90°.whenθ3bees180°,theinclinanofplutobeinitheentricitybeaxindthearguntofperihenbees90°again.willia&&benson(1971)anticipatedthistypeofresonanceteredbni,nobili&&carpino(1989).
anarguntθ4=ϖp−ϖn+3(Ωp−Ωn)libratesaround180°withalongped,∼5.7x108yr.
inournuricalintegrans,theresonances(i)–(iii)arewellintained,andvarianofthecriticrguntsθ1,θ2,θ3reinsrduringthewholeintegranped(figs14–16).however,thefourthresonance(iv)appearstobedifferent:thecriticrguntθ4alternateslibranandcircnovera1010-yrti-scale(fig.17).thisisaninterestingfactthatkinoshita&&nakai's(1995,1996)shorterintegranswerenotabletodisclose.
6disn
whatkindofdynacalchanisaintainsthislong-tertabilityoftherysystewecaniediatelythinkoftwojorfeaturesthatyberesponsibleforthelong-tertability.first,thereseeobenosignificantlower-orderresonances(annandsecr)betweenanypairangtheninepls.jupiterandsaturnareeannresonance(thef‘greatinequality’),butnottintheresonancezone.higher-orderresonancesycethechaotatureoftherydynacaln,buttheyarenotsostrongastodestroythestablerynwithinthelifeftherealsrsystethesecondfeature,whichwethinkisrrtantforthelong-tertabilityofourrysysteisthedifferenceindynacaldistancebetweenterrestrindjovianrysubsyste(ito&&tanikawa1999,2001).whenweasureryseparansbythetualhillradii(r_),separansangterrestrialplsaregreaterthan26rh,whereasthoseangjovianplsarelessthan14rh.thisdifferenceisdirectlyrtedtothedifferencebetweendynacalfeaturesofterrestrindjovianpls.terrestrialplshavesllersses,shorterorbitalpedsandwiderdynacalseparan.theyarestronglyperturbedbyjovianplsthathavrgersses,longerorbitalpedsandnarrowerdynacalseparan.jovianplsarenotperturbedbyanyotherssivebodies.
thepresentterrestrialrysystesstillbeingdisturbedbythessivejovianpls.however,thewideseparanandtualinteraongtheterrestrialplsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianplsiso(ej)(orderofgnitudeoftheentricityofjupiter),sincethedisturbancecedbyjovianplsisaforcedoscinhavinganalitudeofo(ej).heighteningofentripleo(ej)∼0.05,isfarfroufficienttoprovokeinstabilityintheterrestrialplshavingsuchawideseparanas26rh.tweassuthatthepresentwidedynacalseparanangterrestrialpls(&;26rh)isprobablyoneofthestsignificantcondinsforintainingthestabilityoftherysystevera109-yrti-span.ourdetailedanalysisofthernshipbetweendynacaldistancebetweenplsandtheinstabilityti-scaleofsrsystrynisnowon-going.
althoughournuricalintegransspanthelifefthesrsystethenuerofintegransisfarfroufficienttofilltheinitialphasespace.itisnecessarytoperfororeandrenuricalintegranstoandexaneindetailthelong-tertabilityofourrydynacs.
——以上文段引自ito,t.&tanikawa,k.long-terntegransandstabilityofryorbitsinoursrsysten.not.r.astron.soc.336,483–500(2002)
这只是作者君参考的一篇文章,关于太阳系的稳定性。
还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。